Studying Programmer Behaviour at Scale:
A Case Study Using Amazon Mechanical Turk

Jason T. Jacques
Department of Engineering
University of Cambridge
Cambridge, United Kingdom
jti2l@cam.ac.uk

ABSTRACT

Developing and maintaining a correct and consistent model of how
code will be executed is an ongoing challenge for software devel-
opers. However, validating the tools and techniques we develop
to aid programmers can be a challenge plagued by small sample
sizes, high costs, or poor generalisability. This paper serves as a
case study using a web-based crowdsourcing approach to study
programmer behaviour at scale. We demonstrate this method to
create controlled coding experiments at modest cost, highlight the
efficacy of this approach with objective validation, and comment
on notable findings from our prototype experiment into one of the
most ubiquitous, yet understudied, features of modern software
development environments: syntax highlighting.

CCS CONCEPTS

« Human-centered computing — Empirical studies in HCI; «
Software and its engineering — Integrated and visual devel-
opment environments.

KEYWORDS

programming, behaviour, crowdsourcing

ACM Reference Format:

Jason T. Jacques and Per Ola Kristensson. 2021. Studying Programmer
Behaviour at Scale: A Case Study Using Amazon Mechanical Turk. In
Companion Proceedings of the 5th International Conference on the Art, Sci-
ence, and Engineering of Programming (<Programming’21> Companion),
March 22-26, 2021, Virtual, UK. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3464432.3464436

1 INTRODUCTION

Writing code is hard. Reading code is harder. Be it code written
by someone else, or your own code that you are coming back to
years, weeks, hours, days, or even just minutes later, developing
a consistent understanding of what will actually be executed can
be immensely challenging. It is crucial that human authors are
able to develop and maintain a consistent model of the computers
execution to avoid software errors. Syntactically correct code that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

<Programming’21> Companion, March 22-26, 2021, Virtual, UK

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8986-0/21/03...$15.00
https://doi.org/10.1145/3464432.3464436

Per Ola Kristensson
Department of Engineering
University of Cambridge
Cambridge, United Kingdom
pok21@cam.ac.uk

is logically erroneous can have significant and even fatal conse-
quences (e.g. [19, 26]).

While the process of training and maintaining the correct inter-
pretation by human reviewers of machine interpreters has many
aspects, including education, language design, formal methods, and
others, extracting generalisable models of how human readers un-
derstand and internalise the code in front of them has a number
of challenges. Evaluation, both of existing practice and new tools,
is crucial to this process. In the literature, studies may use either
a captive audience of predominantly novice programmers, such
as students [31], require large resources and suffer limited sample
sizes [32], or otherwise struggle with generalisability. We explore
some of these approaches further in Alternative Approaches.

In this paper, we propose a crowdsourced, web-based approach
to evaluating human understanding, both of existing practice and
of new and innovative tools. We consider this through the lens
of a case study evaluation of the efficacy of syntax highlighting.
Through this lens, we make the following contributions:

e We demonstrate a method to evaluate programmer behaviour
in a semi-controlled manner, at scale, and with modest costs
using web-based crowdsourcing.

e Highlight predictable correlations between self-reported ex-
perience levels and objective code quality measures includ-
ing composition times and execution speed.

e Comment on interesting results from a case study, using
these techniques, and suggest future applications of our ap-
proach.

2 ALTERNATIVE APPROACHES

Software development inherently produces copyrightable, poten-
tially proprietary original works. The potential sensitivity of the
material being generated, and the complexity of these task itself,
can make evaluation of developer practices and evaluation of new
tools challenging. To date, there has been three typical approaches
to the study of developer behaviour: in situ, in the lab, and post hoc
analysis.

In situ. This type of study is typically carried out in association
with an organisation undertaking a software development project.
This type of study may be limited by the confidentiality of the
project and the ability to access and interact with the developers
under study. These studies may take place over a long period of time
and can potentially be disruptive to the project [32]. Additionally,
the homogeneous nature of the developer environment limits the
diversity of the data collected and commercial nature may preclude
comparisons of multiple approaches to the same problem.

https://doi.org/10.1145/3464432.3464436
https://doi.org/10.1145/3464432.3464436
https://doi.org/10.1145/3464432.3464436

<Programming’21> Companion, March 22-26, 2021, Virtual, UK

In the lab. An alternative approach to understanding developer
behaviour is to recruit developers directly to a lab-based study. This
may be done either by recruiting students from related courses
to participate in software development exercises, or alternatively
hiring professional software developers. While students present
a readily available candidate pool, their external validity is ques-
tionable due to their inexperience with the task under study and
their limited exposure to alternative techniques [31]. More recently
Massive Open Online Courses (MOOCsS) offer another source of
beginner programmer behaviour and code samples, however, data
from these participants are likely to suffer the same homogeneity
and unintentional but undue influence from the instructors as their
in-person counterparts. Professional software developers poten-
tially bring much broader experience to lab-based studies, however
sample size is often limited by the expense of recruiting profes-
sional developers for the long periods of time required to develop
substantial software projects [32].

Post hoc analysis. The modern software development process
includes the use of version control systems and allows developer
activity to be inferred and analysed after development is complete
[15]. This approach can offer access to large code bases, which may
be drawn from open source code repositories, typically includes
metadata attributing code changes, and may be coupled with some
form of issue tracking to allow the reasoning for a given change to
be understood. However, the granularity of the available data may
be limited by the check in frequency of the individual developers and
fails to provide access to ethnographic data offering little scope to
reconstruct contemporary activity that may have impacted coding
decisions.

Each of these techniques offer differing perspectives on devel-
oper behaviour, however, each has challenges. By capitalising on
the lower cost of crowdsourced work and the diverse nature of de-
velopers on these platforms a much more representative example of
how code is developed can be collected [38]. Like lab-based studies,
crowdsourced data collection can be carried out repeatedly with
different participants to evaluate the differing approaches of indi-
viduals to the same problem. While crowdsourced data collection
shares the retroactive nature of post hoc analysis, instrumenting
the environment to record additional forms of metadata, including
keystroke-by-keystroke interactions, can provide some of the rich-
ness typical of in situ or lab-based studies but missing from version
control systems.

3 CROWDSOURCING CODER BEHAVIOUR

Crowdsourcing offers an approach to recruiting developers which
avoids some of the challenges identified in Alternative Approaches.

Modern web-browsers offer an extremely flexible platform and
have had the ability to support real-time collaborative program-
ming environments for some time. For example, in 2011, Goldman
et al. [9] demonstrated their tool Collabode and how this flexibility
can be capitalised upon to support concurrent editing of source
code and to facilitate true real-time collaboration of software devel-
opment. Similarly, in their 2014 work, LaToza et al. [25] introduced
CrowdCode to demonstrate how large software projects might be
iteratively broken down and implemented by a distributed and tran-
sitory workforce of crowdworkers using a web-based environment.

Jacques and Kristensson

These nearly instantly deployable, low-overhead environments are
particularly attractive for crowdsourcing. Instead of requiring work-
ers to already use or download a particular development tool, by
using the already familiar and ubiquitous web platform workers are
able to participate in programming tasks from almost any device,
anywhere, and at any time.

Crowdsourcing offers a large participant pool [11, 21], with di-
verse demographics and skillsets [43], at low cost and with rapid
task turnaround [29, 37]. For commercial requesters, crowdsourcing
offers an on-demand workforce [5] coupled with low overheads [22].
For academic requesters and researchers, the highly diverse work-
force offers a much broader participant pool than is available when
using more traditional methods such as walk-in lab sessions [4].
The additional financial incentive typically offered to crowdwork-
ers can be used to influence which participants choose to undertake
the task [17]. The comparatively low cost of crowdsourcing, can
also facilitate much larger samples and more iterations that can
be carried out [29, 37]. While the remote nature of crowdworkers
may require a substantial investment in set-up and task creation,
these one-off costs are greatly amortised by the large number of
responses which can be gathered, and the low cost of changing and
re-running an experiment [2, 8].

Of all the extant crowdsourcing platforms one of the first, and
perhaps the most popular [16], is Amazon Mechanical Turk!. MTurk
is a generic web-based platform which allows task requesters to
specify tasks, commonly referred to as HITs (Human Intelligence
Tasks), for completion by a large pool of on demand “workers”.
Mechanical Turk, broadly, offers the task requester two types of
tasks: hosted and external. For more complex tasks, the external
model allows much more control over task design. Tasks are hosted
on a web server of the requester’s choosing. This flexibility allows
multi-page task designs and for data to be stored outside the MTurk
system.

In many cases demonstrating that a human worker is capable
of a given task is not the purpose of the research. The goal being
to show that a solution or design offered is demonstrably better
than previous work. Work by Heer and Bostock [14] on graphical
perception has shown the suitability of the workforce in evaluating
visualisation techniques. Their work contrasts lab-based evaluation
showing the viability of more general artefact evaluation by crowd-
sourced participants, but specifically in the field of HCI. Offering
specific advice for researchers who want to capitalise on this di-
verse, low-cost participant pool Heer and Bostock [14] highlight
the importance of capturing indicative metadata from the work-
force where possible, such as display configuration details using
JavaScript, as this may influence user preferences and be indicative
of user performance.

Prior work has considered the use of crowdsourcing in to engage
with a programmers using platforms, including Amazon Mechani-
cal Turk. In their related work, Tunnell Wilson et al. [40] survey
developers using multiple-choice questions to determine developer
preferences in the context of designing language features. Similarly,
Rein et al. [34] used a survey-based approach to determine the com-
prehensibility of code to novice developers, specifically filtering
for this demographic. In an interactive study, also targeting novice

! https://mturk.com

https://mturk.com

Studying Programmer Behaviour at Scale: A Case Study Using MTurk

developers, Marwan et al. [28] utilise the block-based iSnap tool to
investigate the impact of providing hints on developers’ progress
over time. In contrast, we combine a fully interactive text-based ed-
itor environment with extensive instrumentation to vastly increase
the richness of the data available for analysis.

Web-based crowdsourcing environments typically provided lim-
ited support for this metadata collection. Amazon Mechanical Turk,

for example, offers simple key-value storage for the data collected [1].

While requesters may use this to map any number of attributes?,
storage is typically mapped one-to-one with each field submitted
by the user. Despite the limited typical use case, requesters are able
to store a variety of metadata about the task at hand. However,
for complex tasks, the values of interests, such as browser and op-
erating system used, can be extracted using client side JavaScript
code that then adds these values to the form at the time of submis-
sion®. This data is then stored either with the platform provider
themselves, or using other off-platform data storage.

3.1 Programming Languages

Different programming languages can have highly distinctive in-
terpretations of the same string of symbols. The choice of program-
ming language that the participants will use is influenced not just
by the aspects of the user behaviour or inferred understanding that
we wish to explore, but also practical considerations such as those
affecting the implementation and which languages we can expect
our target demographics are likely to be familiar with.

According to the February 2021 TIOBE index [39]—one indicator
of programming language popularity—C, Java, Python, C++ and
C# represent the top five languages in use. With the notable ex-
ception of Python, these languages all feature very similar syntax
and simple code samples in one of these languages are likely to be
recognisable to those familiar with another. According to the latest
Redmonk ranking—an alternative, competing ranking of program-
ming language popularity— from July 2020, the top five languages
as follows: JavaScript, Java, PHP, and Python, with C++ and C# in
joint fifth place [30]. Again Python sticks out from the other five
languages which otherwise share a number of syntactic similarities.

JavaScript, the top language identified by Redmonk and number
seven in the TIOBE index, behind PHP, features syntax common
with four of the top five TIOBE programming languages, such as
the use of curly braces to delimit blocks. As part of its heritage
as an interpreted scripting language, JavaScript is typically more
forgiving of user error and, for example, allows programmers to as-
sign values to undefined variables due to the nature of its dynamic
typing. Despite the unusual prototype-based object model, simple
JavaScript functions share many similarities to other C-style pro-
gramming languages and by limiting exercises to short examples,
user exposure to, and required knowledge of, these differences is
minimised.

For our purposes, JavaScript also has the benefit of being na-
tively executed by the web-browser. While it is possible to process

2 While neither Amazon’s specifications nor the W3C HTML specifications specify a
maximum number of fields, technical limitations of the workers’ client browser or the
Mechanical Turk API may impact the number of values it is possible to submit and
store for this particular platform.

3 While spoofing these values is possible, suspicious values can often be detected. A
2020 study indicated that less than 3% of of users apply such countermeasures [33].

<Programming’21> Companion, March 22-26, 2021, Virtual, UK

JavaScript Code Editor Study o

: Your code must be written and edited in the editor below. Work completed outside this
| environment will not be eligible for payment. §

Question 1

In this task you must write a function that takes the base pay and hours worked as parameters, and returns the total pay or
the error value of false .

Summary of Rules
« An employee gets paid (hours worked) x (base pay), for each hour up to 40 hours.
« For every hour over 40, they get overtime = (base pay) x 1.5.
« The base pay must not be less than the minimum wage ($8.00 an hour). If itis, return £alse .

« If the number of hours s greater than 60, return ' false .

Your code will be executed with the following call, and wil test a variety of inputs. You can run your code as many times as
'you wish, but you must do so at least once to validate your work.

pay(base_pay, hours)

function pay(base_pay, hours) {

console.log('base_pay: ' + base_pay);
console.log('hours: ' + hours);

return null;

}

Not accepted

“base_pay: 10"
“hours: 41"

"Not accepted. Expected: 415; received: 0" Run

Figure 1: The conditionals question as seen by workers with
syntax highlighting enabled. Note that the code has been ex-
ecuted, and “Not accepted” as indicated by unit test results
in the virtual console area.

other languages using server-side processing, client-side transla-
tion techniques, or even more modern browser APIs such as Web
Assembly, this may obfuscate issues with the code and add addi-
tional complexity to the implementation. Python, for example, may
be run in the browser, on the client, using the latter technique [7].
Using the native JavaScript interpreter allows for code to be tested
with minimal overheads, discussed below. This popularity, inher-
ent familiarity, flexibility, and runtime support make JavaScript an
opportune choice for crowdsourcing programming language tasks.
For these reasons, JavaScript was chosen as the language used in
our case study.

3.2 Web-based Editor

Our environment was designed to offer only enough basic func-
tionality to support the development of simple, one “file” programs.
The environment provided a text editor, advanced syntax highlight-
ing capabilities, real-time static analysis and error checking of the
code, requester specified unit tests, and console redirection for rudi-
mentary debugging support. The system was fully instrumented,
capturing all available user interactions and can be seen in Figure 1.

3.2.1 Text Editor. The main component of the environment is the
editor. Similar to the aforementioned CrowdCode [25], our editor

<Programming’21> Companion, March 22-26, 2021, Virtual, UK

component is based on the open-source CodeMirror* text editor
library. CodeMirror supports a wide variety of programming lan-
guages natively including support for indentation and basic syntax
highlighting with themes. To facilitate static analysis and more
advanced syntax highlighting the Esprima’® parsing library was
integrated to the editor.

While it is possible to implement more advanced editors in the
browser, for example code-server © based on Microsoft’s popular
Visual Studio Code project 7, these editors offer a less controlled en-
vironment. Further, the complex and comprehensive environments
may provide additional challenges for the level of instrumentation
desired (see Instrumenting the Editor).

3.2.2 Console Output. The console is commonly used to inspect
program state in JavaScript and can be used for printf-style de-
bugging. To support the workers in this approach, the default
console. log() functionality was overridden to display the console
in the editing environment beneath the code itself. This output area
was also used by the unit tests, indicating to the user the success
or failure of each test and to provide hints as to why. By displaying
this output as part of the interface, workers were not required to
understand how their particular browser processes and outputs
console logging nor were they unnecessarily exposed to the code
which managed the editor itself.

3.2.3 Real-time Error Checking. To support the developer in cases
where they are unsure why the unit test cannot be executed, due
to fundamental errors with the code, the JSHint® tool was also
integrated. This allows the user to identify issues with the code
that may stop it from executing at all. The output from the tool was
shown next to the code with line numbers. Code Mirror natively
supports red underlining of errors as supported by some other
editors and IDEs. This was disabled for these tests. The decision not
to use the potentially more familiar red underlining of the erroneous
code with tool-tip style hints was made to allow a consistent style
of error messages to be presented to the user whether or not syntax
highlighting was enabled.

3.24 Instrumenting the Editor. To maximise the ability to recreate
the exact user process that lead to the production of the submitted
code, all interactions that could be captured unobtrusively were
recorded. These interactions included user input device events
(mouse movements, clicks, key presses) and system events (code
execution, cursor movement, text selection, unit test results). These
events were captured by adding onevent handlers and inspecting
the resulting event object or other data structures as appropriate.

Due to the relatively large amount of real-time data captured,
using a single upload of these events at the end of the task would
result in a long wait period for the worker. As such, data was
uploaded asynchronously as the worker carried out the task. This
process was managed by a simple API provided by PHP and backed
by a PostgreSQL database. Events were recorded both with a server-
generated event ID and a client-side specified ID, in combination
with the client side reported event time. This ensured that where

4 http://codemirror.net

5 http://esprima.org

© https://github.com/cdr/code-server
7 https://github.com/Microsoft/vscode
8 http://jshint.com

Jacques and Kristensson

events were recorded out of order, due to the event driven nature
of the JavaScript code and the asynchronous nature of the upload,
were able to be reconstructed in the order they occurred.

3.2.5 Replaying the Data. The system was developed to support
video-style simulated playback of user interactions, allowing the
development process to be reviewed afterwards in real or accel-
erated time. Even where such playback ability is not desired, this
approach ensures that all pertinent data is captured and allows a
later recreation of the users interactions. Further, video-style play-
back of captured data may support ethnographic approaches to the
data analysis [12]. The playback component of the system offered
real-time playback of the coding process and includes on-screen rep-
resentations of the mouse movement, click events, and key presses
while maintaining the representation of the editor environment in
the state that the worker saw it at that point in time.

3.3 Validation

Software development, unlike many other types of tasks routinely
crowdsourced, requires a certain skill level before the work can be
included in a project or dataset. Unlike studies targeted at beginner
or learner programmers, our case study attempts to understand
the behaviour of developers who could already complete these
basic tasks. To ensure that our participants met this level the task
included both automated unit tests, and a survey of participant
experience for cross-validation of self-reported skills. By testing
workers’ contributions against a given specification only workers
who meet at least basic levels of programming ability were able to
participate in our tasks.

3.3.1 Unit Testing. Testing the code is important not just for the
requester, but also for the worker. Understanding why a complete
code sample does not meet the required specifications can be diffi-
cult, especially where the task is posed only in prose without clear
details of expected behaviour in corner-cases or with undefined in-
puts. Providing deterministic and repeatable tests offers an absolute
benchmark for the worker to meet. For the requester, testing the
code allows the skill level of the developer to be evaluated, poten-
tially before the code has been submitted. When testing developer
skill level, the ability or inability for the worker to pass a particular
test can be used as a qualifying benchmark before allowing the
worker to continue to more complex work or including their work.

The editing environment supports requester defined unit tests
to interrogate the code. Tests were developed to provide a selection
of valid, invalid, and corner-case inputs to thoroughly evaluate
the developers’ submitted work. Submitted code was required to
pass the unit test before the worker was permitted to proceed. To
make the testing process transparent to the user failed tests were
displayed in the environment’s console and included both the value
provided and the expected output. The submitted code was available
for review by the tests before the unit tests were executed. This
approach allows code reflection to occur and supports checking
for certain undesirable behaviour of the developers, such as coding
to the test rather than the specification. For example, the use of
a particular “magic number” can be searched for and specifically
refuted. However, in our case study, this facility was not used in
light of the relatively simple questions that were chosen.

http://codemirror.net
http://esprima.org
https://github.com/cdr/code-server
https://github.com/Microsoft/vscode
http://jshint.com

Studying Programmer Behaviour at Scale: A Case Study Using MTurk

3.3.2 Survey. To allow further introspective comparison and vali-
dation of our recruited participants, and to allow us to understand
any unexpected trends or behaviours in our results, a brief survey
was presented following completion of the two coding questions.
This meta-data is used, where appropriate, to contextualise our
results.

e Age: 18-24, 25-34, 35-44, 45-54, 55-64, 65+

o Gender: Male, Female, Other

e Normal coding computer: this computer only, this computer
mainly, this computer and others, another computer

o Most used language: Java, Other JVM, C#, Other .NET, Other
bytecode, Objective C, C/C++, Other compiled, JavaScript,
PHP, Python, Shell (e.g. bash), Other scripting/web, Embed-
ded (e.g. assembly), Others

e JavaScript experience: novice, intermediate, professional

e Years using JavaScript: 0, 1, 2, 3,4, 5,6, 7, 8,9, 10+

e JavaScript editor: Eclipse, Netbeans, Other IDE, Notepad++,
Textmate, Other GUI editor, vi/vim, emacs, Other terminal
editor, None of these.

o Syntax highlighting (presented as four graphics):
unhighlighted dark-mode, syntax-highlighted dark-mode,
unhighlighted light-mode, syntax-highlighted light-mode.

4 CASE STUDY

Most modern IDEs, the primary interface with which individuals in-
teract with text-based languages, follow a fairly uniform layout and
provide somewhat consistent functionality. However, the process
of arriving at this de facto standard environment was not through
rigorous study, but rather collective reasoning, convention, and fiat.

To demonstrate our approach, we consider one of the most pop-
ular augmentations applied to text-based programming languages.
This common tool provides a foundation for the exploration of the
approach, highlight both the strengths and weakness of running
remote, crowdsourced experiments of this type.

4.1 Syntax Highlighting

One technique frequently used to aid human readers to internalise
the interpretation of code is syntax highlighting. Syntax highlight-
ing encodes the meaning of the various lexical elements used by
the language and systematically emphasises them with a variety
of typographical conventions such as colour, typeface, and other
micro-augmentations [18]. Syntax highlighting is an almost univer-
sal feature of text-based code editors and is even used in consumer-
facing end-user products such as Microsoft Excel [42], which uses
both coloured parenthesis matching and typographical convention,
such as automatic uppercasing of function names, to infer meaning
to the user. While syntax highlighting is almost universally applied
by code editors, evidence in the literature is sparse for the efficacy
of this practice.

One study that offers some evidence for the effectiveness of
these techniques was reported by Sarkar [35]. In this read-only
study from 2015, participants were asked to compute the results
from Python functions, given a variety of arguments, for both
highlighted and unhighlighted code. While the study showed some
limited efficacy, the effectiveness of the treatment decreased with
proficiency. Likewise, Dimitri [6] suggests that syntax highlighting

<Programming’21> Companion, March 22-26, 2021, Virtual, UK

has a positive effect on code completion time among users of the
Sonic Pi environment’. However, follow-up work by Beelders and
du Plessis [3] from 2016, who studied the comparative effect with C#,
and Hannebauer et al. [13] from 2018, who considered novices using
Eclipse, showed no statistical significance between code presented
with and without syntax highlighting.

Curiously, the authors of these studies suggest both a positive
correlation between syntax highlighting and user experience [3]
and a diminishing one [6]. Further, even studies utilising larger
samples highlight challenges with the possible small effect size
when dealing with such treatments, further suggesting that proper
evaluation may require larger sample sizes [13]. These mixed and
constrained findings draw attention to the still inconclusive status
of work in this area.

Some of the challenges associated with recruiting both suf-
ficiently large, and sufficiently representative, samples from de-
velopers are discussed in Alternative Approaches. A web-based
crowdsourced approach may offer a potential avenue to explore
the complex interactions posited by these works. In fact, Beelders
and du Plessis [3] capitalised on the flexibility offered by web-
technologies to enhance their in-lab study.

4.1.1 Hypotheses. To further explore these confounds, and with
particular regard to syntax highlighting, we posit the following
hypotheses:

H1: Syntax highlighting improves coder efficiency through re-
duced code composition time.

H2: Syntax highlighting improves coder efficacy through reduced
errors in resulting code.

4.2 Task Choice and Design

The difficulty of the tasks set may affect which conclusions can be
drawn from the approaches taken by the developer. Trivial prob-
lems, such as correcting a “typo” will encourage non-programmers
to attempt the task while limiting the variety of solutions that might
be expected of experienced developers. Equally, where a wide-net
is cast, such as our web-based approach, the tasks must not be so
complex as to require extremely specialised knowledge that might
be lacking in the general developer population.

One well-tested source of beginner level coding problems that
both demonstrate a basic ability to program and provide scope for
interesting solutions are MOOCs. While collecting data from actual
MOOCs may be problematic as it self-selects for beginner program-
mers, as outlined in Alternative Approaches, these superficially
simple questions offer broad scope for inventive or unexpected
solutions.

The MIT OpenCourseWare Introduction to Programming in Java
course [20] provides a selection of short, well-tested assignments.
While the first assignment, a gravity calculator, depends on mathe-
matical understanding of the problem, assignments two and three
offer two typical data processing problems which can be adapted
for the JavaScript programming environment: conditionals and
iteration.

Conditionals: Pay Calculator. This problem requires the developer
to calculate the correct wage for a given number of hours and pay

% https://sonic-pi.net

https://sonic-pi.net

<Programming’21> Companion, March 22-26, 2021, Virtual, UK

level following a series of rules. To make the problem easier to unit
test a very basic function stub was provided and the worker asked
to return a special value of false instead of printing errors as in the
original question. The modified summary of rules is as follows:

o An employee gets paid (hours worked) X (base pay),
for each hour up to 40 hours.

e For every hour over 40, they get overtime = (base
pay) X 1.5.

o The base pay must not be less than the minimum
wage ($8.00 an hour). If it is, return false.

o If the number of hours is greater than 60, return
false.

The problem can be solved simply using a series of condition-
als, catching the error cases and calculating the wage, including
overtime compensation if applicable.

Iteration: Fastest Runner. In this question the developer is given
two arrays, one of names and and one of times (run duration), and
asked to identify the fastest runner. Similar to the first question, to
ease unit testing the iteration problem was modified from request-
ing the developer to print the output to instead returning the name.
While the original problem provides a program stub including the
hard coded values and a skeleton for loop, the modified task used
an implementation agnostic function stub with two parameters, an
array of names and times. Conceptually not dissimilar to that of
Sarkar [35], this approach allowed the code to be tested multiple
times and ensured that the developer was unable to simply work
out the correct answer and hard code a return value.

Typically this task is approached iteratively, looping through the
array of names and times and noting the index of the minimum.
The question as posed in the original assignment offered a basic
for loop to encourage this approach. As the provided stub did not
include a loop, more advanced software developers were not unduly
dissuaded from providing novel alternative solutions to the problem
not anticipated by the requester.

4.3 Procedure

Two-hundred participants were recruited using Amazon Mechani-
cal Turk. The task was listed with a maximum completion time of
two hours, in which to carry out both of the two questions posed,
however, workers were not expected to take this amount of time
provide working solutions. Workers were offered $1.00 USD for
completion. Regardless of the the warning seen in Figure 1, all
participants were paid.

Workers were introduced to the task and asked to agree to their
participation in the experiment, as required by our ethics procee-
dure. Before beginning the task, workers were shown a modified
program stub from a third OpenCourseWare question, as an example,
and told they would need to add functionality to program stubs
with similar complexity.

The task was configured with the two questions, one with syntax
highlighting and one without. Questions order and which of the
two questions to highlight were counterbalanced across the partici-
pants to account for any ordering effects of both the treatment and
question.

Once each question had completed loading, all user interactions
from the keyboard and mouse were recorded and sent back to the

Jacques and Kristensson

server. Workers were required to execute their code at least once, at
which point it was unit tested. If the unit test failed, the worker was
notified of these errors in the on-screen console. This provided them
with both the expected value for each test and the data provided
by the code. Workers were then required to revise the code until
the test passed. On successful execution, activity recording was
stopped and the user could optionally pause, taking a break before
moving on to the next question.

Finally, the workers were asked to complete a short survey re-
garding their development environment and coding experience.
The questions included, age, gender, which computers they use to
develop software, their most used programming language, their self
assessed level of JavaScript proficiency, their period of that experi-
ence, the editor they use most, and what type of syntax highlighting
they typically use as outlined previously (see: Survey).

5 RESULTS

Our case study offers a lens with which to evaluate our remote,
crowdsourced approach to studying programmer behaviour. How-
ever, the results of the syntax highlighting study itself provide a
touch point with which to formulate an understanding of who these
developers are and to ground our approach. The results of this case
study are considered herein.

Of the 200 workers, 30 submitted the task without completing
both questions, and the data for a further 9 indicated completion
times in excess of the two hour maximum allotted for the task.
While workers code was tested to ensure completion, the system
recovered from termination of the task (such as a browser refresh
or exiting the tasks) by advancing to the next question. This intro-
duced scenarios where workers who had not entirely completed a
question, or where the task was “resumed”, to advance to the next
question. This resulted in a post-filtering dataset of 161 workers
who completed both of the set questions.

The majority of participants indicated being male, 87%, with 12%
choosing female and 1% selecting “Other”. The most frequently
used languages by the participants was mixed, with 29% preferring
Java, 15% C and C++, 13% Python, 12% C#, 10% JavaScript, 9% PHP,
and 12% preferring other languages. 40% of participants described
themselves as novices with JavaScript, 49% intermediate, and 11%
professionals. The mean length of JavaScript experience, in years,
for each category was 1.42, 3.44, and 6.28 respectively.

Regarding their development environments, 38% of participants
indicated that the computer they used for the task was the only
one on which they wrote code. 50% indicated using two or more
computers, including the task computer (15% this mainly; 35% this
and others) and 12% indicated that they used another computer
to write software. 93% of participants indicated that they used
some kind of syntax highlighting (59% light background; 34% dark
background), compared to 7% using an editor that does not highlight
their code (6% light background; 1% dark background).

5.1 Task Completion Time

Hypothesis 1 for the syntax highlighting cases study considered
task completion time, anticipating shorter completion times for
highlighted compared with unhighlighted code. The overall mean
completion time per question was 558 seconds. Overall, the mean

Studying Programmer Behaviour at Scale: A Case Study Using MTurk

Table 1: Summary of mean completion times in seconds.
Standard deviation (SD) is shown in parentheses.

Highlighted Unhighlighted Combined

Both Questions 534 (390) 583 (448) 558 (417)
conditionals 546 (399) 558 (417) 552 (407)
iteration 522 (382) 609 (471) 564 (428)

completion time for questions presented with syntax highlighting
decreased: 534 seconds for highlighted questions and 583 seconds
for unhighlighted questions. This also held true for each question
presented. For the conditionals question mean completion times
were 546 seconds highlighted and 558 seconds unhighlighted; for
the iteration question 522 seconds highlighted and 609 seconds
unhighlighted. This data is summarised in Table 1. However, despite
this apparent positive effect, and in contrast to some prior work
(i.e. [35]), there was high variability in completion times between
users and a one-way ANOVA with repeated measures indicated
no statistical significance between the log-transformed completion
times of highlighted and unhighlighted solutions (Fy,160 = 1.303,
qf, = .008, p = .255). Similarly, one-way ANOVAs for the log-
transformed completion times for both the conditionals question
(F1,159 = 0.032, p = .859) and the iteration question (Fy, 159 = 1.951,
p = .164) indicated no statistical significance.

5.1.1 Possible learning effect. A deeper look at the completion time
data indicates that the mean completion time for workers was lower
for the second question, irrespective of the order in which questions
were posed and whether or not this question was highlighted (first
question, 605 seconds; second question, 511 seconds). This held for
all possible question sequences, for example where first question
was conditionals, highlighted (564 seconds) the worker then would
complete iteration, unhighlighted for their second question (511
seconds). It might be conjectured that workers took some time to
familiarise themselves with the environment, the expectations of
the task, the precise semantics and syntax of JavaScript, or simply
to get into “the zone”. This anomaly points to the need, especially
where a within subjects design is sought, to have an additional
preparatory question or “training” period to familiarise the worker
with the task, system, and expectations. The extent of this training
is an important experimental design decision [23]

5.2 Programmer Interactions

The comprehensive instrumentation included in the task allows a
more in-depth exploration of worker activity while completing the
task. Ethnographic approaches, such as reviewing the simulated
playback of the coding session can offer a personalised view of user
activity and process. Equally, automated techniques can be applied
to the individual inputs collected. Mouse trace visualisation offers
some limited insight into user focus during the task. Keystroke-by-
keystroke data offers potential insights in to the editing process
and activity correlations which cannot be gathered from solutions
nor easily understood from reviewing the simulations alone.

5.2.1 Simulated Playback. The instrumentation included in the
task captured all significant events and was stored as to allow both
real-time and accelerated playback of the coding process. In total

<Programming’21> Companion, March 22-26, 2021, Virtual, UK

over two days of user activity was recorded. A review of a small
sample of the simulations found that much of the development
time was spent reading the question specification, thinking on
the problem, and attempting to understand code execution pro-
cess. Each of these activities was interspersed with intense periods
of actual development time, where the worker introduced code
snippets either by typing them in or copy-and-pasting them from
alternative sources and modifying them to the needs of the specific
problem. The comprehensive instrumentation offered the ability to
identify how code was introduced to the editor. In particular, this
copy-and-paste behaviour was anticipated and was not prevented.

Users were implicitly permitted to source partial or representa-
tive solutions and modify them to their needs. Events were recorded
both when users pasted in the code, but also when the editor was
backgrounded. While it was not possible to capture from where
the user retrieved these code samples, it might be assumed that the
users copied the code from an electronic source and other websites
are a likely candidate. The developers then would go on to modify
the copied code to suit the specific problem. This type of copy-and-
paste and modify is typical of modern developer behaviour [?].
The source, or an approximation of the source!’, can be inferred by
carrying out a web-search for the code snippet as introduced. As the
questions were modified from the original OpenCourseWare ques-
tions and the required implementation language changed, workers
were unable to source code samples solving the presented problem
exactly.

Despite the relatively small size of the problems presented to
users, the large quantity of generated simulations and sporadic
nature of the development process does not lend itself to consistent
visual analysis. However, simulations offer unique insights into spe-
cific or unusual implementations generated by workers. Reviewing
just the completed code demonstrated that some users employed
interesting techniques to solve the questions. For the iteration ques-
tion, eight workers demonstrated the use of Math.min.apply()
and one worker solved the question with a single line of code. An
understanding of how the developer arrived at their solution would
be lost had only the final working code been captured or reviewed.
However, with comprehensive instrumentation it may be possible
to developer deeper insights into the developers’ thought processes.
This worker, for example, considered an iterative approach using a
for loop, before pasting Math.min.apply(Math, array); from
another source and adapting it to their needs (see Table 3). This
play-by-play approach offers far improved level of granularity over
some alternative techniques, such as post-hoc analysis of versioned
source code repositories, such as git.

5.2.2 Mouse Usage. In addition to being available in the playback
data, numerical data was also compiled concerning mouse move-
ments and hover durations. This approach offers more condensed
metrics which do not rely on reviewing the individual sessions.
Overall, the mean distance travelled by the users was 30,364 pixels
over a period of 188.9 seconds during which they clicked the mouse
43 times. Due to the resizable nature of the interface, and ability

10 Many websites now duplicate the content of StackOverflow and other popular
programming code exchanges making precise identification of a source problematic.
However, the specific citation may be of less interest than the likely surrounding
content which lead the worker to select a particular implementation on which to base
their own.

<Programming’21> Companion, March 22-26, 2021, Virtual, UK

Table 2: Mean location and click data for mouse interactions.
Standard deviation (SD) is shown in parentheses.

Area Distance (px) Duration (s) Clicks

Question 2,826 (3,761) 37.59 (93.07) —
Editor 13,359 (15,223) 292.73 (234.48) 24.0 (31.0)
Console 2,243 (3344) 35.76 (58.04) 8.6 (21.8)
Errors 254 (818) 1.95 (14.87) —
Others 11,682 (12,260) 190.12 (207.43) —
Total 30,364 (30,627) 558.16 (417.16) 43.0 (58.5)

to consult external resources, this metric is impacted by the users
screen- and window-size and encodes many indivisible aspects of
the user behaviour and environment.

To compile these figures the raw data from each mouse event was
compared with pre-computed browser geometry and layout data
for each question. In addition to knowing how long the user spent
moving the mouse, how far, and to what, it is important to know
how much dwell time was given to each area. While the markup of
the pages which comprise the editor environment contain many
distinct areas, only four are directly implicated in the development
of the code: the question posed, the editor area, the console for
debugging, and the real-time error display. This data is summarised
in Table 2.

It is important to consider that of the four areas on interest
the error area was dynamically displayed only when errors were
presented to the user. To analyse whether the user was moving
the mouse to inspect a given error, the display status of the error
area was validated against the recorded code. Only when the error
area would be displayed to the user were distance, time, or clicks
attributed to this category.

5.2.3 Keystrokes and Editing. While visual analysis may offer addi-
tional insights for selected work sample (such as unusual solutions)
or a given type of developer (for example, active mouse cursor
users), systematic analysis of the code typed can be used to evaluate
the impact of a given treatment of the editor space. Each keystroke,
or editing action, has a measurable impact on the code. Individual
keystrokes can be composited into a cohesive action. For example,
a series of characters followed by a number of backspaces and an
equal number of characters indicates a correction of a mistyped
character. By considering the difference between the initial string
and the corrected string, the intent of the developer can be iden-
tified. Similarly, the insertion of characters out of sequence, for
example typing a logical expression followed by the insertion of
one or more parentheses may reveal information about the devel-
oper’s approach and process.

In analysing the keyboard data, the act of developing the code
was considered through the lens of a CRUD system interaction.
Each character on screen could be created, read, updated, or deleted.
Keyboard events indicated three of these events, workers could
type a character into the editor, replace a character (using either a
select and type process, or an overwrite mode), or delete a character
(using delete, backspace, or cut, potentially using select in combi-
nation with these actions). The developer also has two methods
of inputting code: using the keyboard explicitly, or pasting one or

Jacques and Kristensson

Table 3: Subset of editing data for UserID 489, question 2.
Note the corrective edit made during events 469-475. The worker types,
I, backspaces, and corrects their entry to i. Some time later, the worker
replaces the text from position 83 (comprising the aborted for loop) with a
pasted code snippet Math.min.apply(Math, array);.

Event Time Type Position Size Content

440 70.608 type-insert 83

1
443 70.857 type-insert 84 1 o
446 70.967 type-insert 85 1 r
449 71.231 type-insert 86 1 .
453 73.107 type-insert 87 1 (
456 74.161 type-insert 88 1 v
459 74.266 type-insert 89 1 a
462 74.399 type-insert 90 1 r
465 74.517 type-insert 91 1 .
469 75.582 type-insert 92 1 I
471 76.138 type-delete 92 1 I
475 76.360 type-insert 92 1 i
478 76.889 type-insert 93 1
481 77.141 type-insert 94 1 o
707 209.087 paste-over 83 30

Math.min.apply(Math, array);

more characters into the editor. This creates situations where each
of these editing actions can occur in either single character or as
multi-character events.

User activity data was processed to tag each of the identified
events. The script tagged each event as one of the six identified in-
put methodologies: type-insert, type-over, type-delete, paste-insert,
paste-over, select-delete. Table 3 provides an example of the tagged
data. The tagged data was further processed to identify edits made
by the user by noting the sequence and positions of the changes.
These events can be summarised and noted as in situ edit events.
This particular user carried out three of these corrective edit events,
with a total of four characters affected, that is, the worker carried
out two single character replacements (one of which seen in events
469-475) and a single two-character replacement where two char-
acters were deleted before two characters were inserted at their
respective positions. A little more than two minutes after this edit,
the worker abandoned this iterative approach, pasting a 30 char-
acter code snippet over the content starting from position 83, the
beginning of the incomplete for loop (event 707). Note that there
were no other events which edited the code during this interven-
ing time; discontinuous event IDs indicate other activity, including
mouse movement, cursor positioning, and records of time spent
away from the editor window.

5.3 Code Efficiency and Errors

Due to the inclusion of the unit test, all participants who completed
the task did so to this objective measure of success. To further distin-
guish code and developer quality we considered two metrics: code
performance and development-time execution errors. The former
offers an objective measure in the form of the time efficiency of the

Studying Programmer Behaviour at Scale: A Case Study Using MTurk

provided code, while the latter suggest insight into the developers’
propensity to submit code in a known non-working state.

5.3.1 Code Performance. To evaluate the performance of the code
produced by the workers, each code sample was executed by tim-
ing the code when executing the same unit tests the workers were
required to pass. The tests were each conducted 100 times for each
code sample, and an average taken to minimise the effects of exter-
nal factors on the reported time. The mean execution time, for all
322 code samples, was 75.52 ms. For the individual questions the
mean execution time was 68.83 ms for the conditionals question,
and 76.22 ms for the iteration question with a range of 60-80 ms
for both questions.

Execution speed is highly dependant on a number of variables,
not only the hardware being used but also the software environment
used to compile or interpret and execute the code. These speed tests
were carried out on an Apple iMac with a 2.9 GHz quad-core Intel
Core i5 processor and 8 GB of RAM. The code was executed with
Node.js 0.12.0'! which uses the v8 JavaScript engine, version 3.28.73.
The v8 engine is the JavaScript processor included with Google
Chrome, the browser used by 69.6% of our participants. This version
of v8 is contemporary with the data collection and, specifically, the
version included in the versions of Google Chrome used by 66.1%
of our participating Chrome users.

5.3.2 Executions and Errors. In addition to the speed of the code,
the number of executions and the errors produced by the workers
might offer some insight into developer experience. JavaScript is
a fairly forgiving language in that many syntactic features are op-
tional, not least that offered by ASI (automatic semicolon insertion).
This flexibility means that while not all errors are terminal, they
might indicate interesting user behaviour.

On average, participants executed their code 4.47 times per ques-
tion. The code was constantly evaluated using JSHint by the editor
environment and, as previously described, users were shown these
errors to the right of the editor area. To determine when errors
were being overlooked, or intentionally ignored by users, a subse-
quent review was carried out using JSHint for each occasion the
user chose to run their code. In total, the mean number of errors
displayed per execution was 1.82 and 14.9% of users executed their
code with one or more errors displayed. Users that did choose to
execute their code with errors displayed did so 10 times on average,
and the average number of errors displayed to these users on each
occasion was 12.23.

5.4 Syntax Highlighting

The design of the study was intended to expose effects relating to
syntax highlighting. While basic measures do not present statisti-
cally significant differences between our treatments with regard
to hypothesis 1, there may be indicators to differences in worker
behaviour worth further investigation. A summary of some metrics
of interest can be seen in Table 4. Hypothesis 2 considered coder
efficacy through reduced errors, again we see marginal reduction in
the mean. However, a repeated measures ANOVA (Fy, 160 = 0.167,
17% =.001, p = .684) does not indicate statistical significance.

1 https://nodejs.org/en/download/releases/

<Programming’21> Companion, March 22-26, 2021, Virtual, UK

Table 4: Summary of collected metrics, by syntax highlight-
ing status. Mean values or percentage of participants.

Note that for the purposes of error calculations, attempts indicates the
number runs which failed to pass the unit tests, plus one.

Unhighlighted Highlighted

Completion time (s) 582.77 533.55
Execution speed (ms) 72.20 72.84
Attempts 4.56 4.37
Editor exits 3.8 3.5
Exit duration (s) 70.81 71.34
Paste events 59.32% 56.21%
Key presses 489 447
Mouse clicks 44.6 41.5
Mouse moment (px) 31532 29196

5.5 Questions and Sequencing Effects

Participants completed the two coding questions in a random order
and with random assignment of the syntax highlighting. The two
questions were design to test distinct logical constructs, and as
such are considered separately below. Further, as noted earlier, an
apparent ordering effect is notable in the completion time is also
explored.

5.5.1 Question Type. Each question tested a different approach
to problem solving and programming ability. As such different
behaviours, completion times, and code execution speeds can be
expected. As each question was completed by all of the included
161 workers, many of the reported details (e.g. years of experience)
are the same for all combinations. These are summarised in Table 5.

Participants produced working solutions to the conditionals ques-
tion slightly faster than for the iteration question, and took fewer
attempts. This may suggest the slightly higher complexity of the it-
eration question. Further impressing the complexity, workers spent
far longer consulting external resources for the iteration question,
exiting the editor environment twice as frequently.

However, workers expended far more mouse movements over
the question area for the conditionals question. Recognising that
users can be observed tracing the instructions, this can be expected
due to the longer question text. This suggests that workers felt

Table 5: Summary of collected metrics, by question type.
Mean values or percentage of participants.

Conditionals Iteration

Completion time (s) 552.24 564.08
Execution speed (ms) 68.83 76.22
Attempts 3.99 4.37
Editor exits 3.8 4.9
Exit duration (s) 42.06 100.09
Paste events 57.14% 58.39%
Key presses 516 420
Mouse clicks 43.0 43.1
Mouse moment (px) 30424 30304

https://nodejs.org/en/download/releases/

<Programming’21> Companion, March 22-26, 2021, Virtual, UK

Table 6: Summary of collected metrics, by coding “session”.
Mean values or percentage of participants.

Session 1 Session 2

Completion time (s) 604.94 511.38
Execution speed (ms) 72.70 72.35
Attempts 4.73 4.20
Editor exits 3.8 3.6
Exit duration (s) 70.95 71.20
Paste events 61.49% 54.04%
Key presses 502 434
Mouse clicks 45.2 40.9
Mouse moment (px) 32599 28129
- Question area 3000 2652
- Editor area 14414 12304
- Console area 2467 2020

greater need to consult the rules that must be followed for the
iteration question. This increased mouse movement in this area
further lends credence to the use of the mouse pointer as a proxy for
interest, even in non-interactive areas. The increased verbosity of
the conditionals question is reflected in the higher keyboard usage
in the conditionals questions. This may represent the more verbose
solution, treating each rule independently, that was typically used.

Other worker behaviour was extremely similar between the two
questions. Use of pasted code snippets, total mouse movement, and
in particular number of mouse clicks are all very similar between
the questions.

5.5.2 Question Order. The order of tasks presented can have pre-
dictable, and unpredictable, impact on user behaviour. The potential
for learning effects and increased environmental familiarity should
always be considered. While the order of the questions presented
was randomised, the questions were presented sequentially im-
mediately after one another in one of two “sessions”, detailed in
Table 6.

Workers produced working solutions to the second questions
faster than for their first questions, and took fewer attempts. As
suggested earlier, this may be indicative of a learning effect in play
as workers gain familiarity with the editor environment. This is
further suggested by the small, but measured gains in code exe-
cution speed, decreased typing, fewer consultations with external
resources—though for fractionally longer—and a decreased use of
pasted code. With a small expected effect size the variability intro-
duced by the improved familiarity with the requirements of the
task may have impacted detectability of changes to behaviour. In a
future study, more extensive and interactive training may mitigate
any potential learning effects.

5.6 Survey Data

Techniques which allow the large volume of raw data to be pro-
cessed with a degree of automation can be used to create summary
data about the workers as a whole. Some of these data points have
been noted in the preceding text. By combining this with the re-
sponses to the survey a picture of developer behaviour can be

Jacques and Kristensson

Table 7: Summary of collected metrics, by self-reported ex-
perience level. Count, mean values or percentage.

Novice Intermediate Professional

Number 64 79 18
Years experience 1.42 3.44 6.28
Completion time (s) 579.43 560.13 473.88
Execution speed (ms) 73.55 72.35 69.67
Attempts 4.64 4.45 3.92
Editor exits 4.0 3.5 3.4
Exit duration (s) 83.63 63.14 61.28
Paste events 54.69% 58.86% 63.89%
Key presses 534 436 377
Mouse clicks 37.5 46.5 47.7
Mouse moment (px) 29948 30495 31267
- Question area 2510 2828 3939
- Editor area 13296 13558 12709
- Console area 1888 2465 2534
Use dark theme 32.8% 34.2% 44.4%

stratified across a variety of parameters such as experience, gen-
der, or country. Additionally, the approaches taken to the different
questions can be considered: conditional and iteration; highlighted
and unhighlighted; and as touched on earlier, question order.

5.6.1 Experience. Workers were asked to self-classify their JavaScript
experience into one of three levels: novice, intermediate, or pro-
fessional. Workers were additionally asked the number of years of
experience they had programming with the language. Of the 161
included workers, the mean reported value was 2.96 years. When
comparing the experience levels of the developers, there are dis-
tinct differences in their survey responses and behaviour. These are
summarised in Table 7.

For workers who report a higher level of experience, the average
years of experience reported also increases. As might be expected,
more senior developers took less time to complete their questions
and demonstrated faster code taking fewer attempts to create a
successful program. More senior developers also wrote their code
using fewer keystrokes, however interestingly they also used the
mouse more. This mouse usage was higher in the question area
and console area commensurate with experience level. Finally, re-
garding the user environment, the fact that detected Chrome usage
decreased and Firefox usage increased with self-reported developer
seniority, might serve as an interesting anecdote.

5.6.2 Gender. While the impact of gender on developer behaviour
has undergone limited study [27] and reporting can be somewhat
controversial [36], asking workers their gender is a common fea-
ture of crowdsourced studies and as such is included here. While
female participants were the smaller group, just 19 compared to 140
male, this may be a reflection of a population bias on MTurk rather
than a measure of a specific bias among the developer population
of the platform. Metrics are summariesd in Table 8. In addition,
two participants chose “Other” as their preferred gender option.
These participants are not included in the table and analysis in this
subsection due to the very small sample size.

Studying Programmer Behaviour at Scale: A Case Study Using MTurk

Table 8: Summary of collected metrics, by self-reported gen-
der. Mean values or percentage of participants.

Female Male

Years experience 2.21 3.09
Completion time (s) 548.31 555.80
Execution speed (ms) 73.68 72.43
Attempts 4.00 4.51
Editor exits 5.0 34
Exit duration (s) 83.63 66.99
Paste events 46.05% 59.46%
Key presses 400 477
Mouse clicks 42.5 43.2
Mouse moment (px) 29719 30206
Use dark theme 15.8% 36.4%

While male workers managed to produce marginally faster code
on average, this might be expected due to their higher reported
years of experience. However, female developers completed their
work faster, with fewer keystrokes, and in fewer attempts. Female
developers pursued other resources more frequently, and for a
longer duration but were less likely to introduce pasted code. This
might indicate an increased adherence to the instructions to com-
plete work in the editor, and is further supported by their reduced
likelihood of running the code with an error message displayed.
Just 10.5% of female workers did so compared to 15.4% of males.

6 DISCUSSION

Participants produced working solutions to the highlighted ques-
tions faster than for unhighlighted questions, and took fewer at-
tempts. While these results show some promise, as detailed previ-
ously, these figures have high variability and cannot be statistically
generalised to the population. Overall, highlighting appears to have
low influence on the measured behaviours, with fairly low changes
in keyboard and mouse use, commensurate with increased task
duration. This may be indicative of a small effect size that would
need increased sample size to properly detect. The unexpected, but
extremely small, difference in code execution speed may warrant
separate further investigation. This may offer avenues for future
work, such as whether a lack of syntax highlighting might have
reproducible bearing on the efficiency of generated code, and what
mechanisms might be at play.

To ensure our participants provided a minimum standard of code,
we utilised unit tests. This offered an objective filter for users to be
included in our dataset. Where contributions must more complex
and acceptable solutions cannot so easily predetermined, filtering
could be carried out using an unrelated task with well defined unit
tests to demonstrate ability. Alternatively, if appropriate, partici-
pants might be encouraged to follow a test-driven-development
approach; thereby having participants produce both the tests and
code that passes these tests, exemplifying the formal specification
of the project.

While our environment is constructed from standard compo-
nents, together it represents a bespoke environment. As noted in
the section Web-based Editor, we consciously chose to deviate from

<Programming’21> Companion, March 22-26, 2021, Virtual, UK

alternative implementations and layouts to support a more con-
trolled and fully instrumented environment. As suggested in our
results, the unfamiliar interface may have had a hand in the con-
sistently higher completion times for the first of the two coding
questions and the possible learning effect we report. However, an
alternative hypothesis may be that developers take some period
to get into “the zone” This confound, no matter its cause, bears
further exploration.

Despite the constrained interface for case study experiments,
one minor trade-off made to improve the user experience was the
use of a resizable interface. While fixed dimensions and layouts
are possible in web-based environments, they are not typically
considered best practice [41], and further detract from more typical
editor environments. However, allowing resizing did little to make
our bespoke editor presentation more familiar to participants and
required additional analysis techniques, including where workers
re-sized the browser part way through the study.

As noted, the large amounts of data being captured, including
user input device events (mouse movements, clicks, key presses)
and system events (code execution, cursor movement, text selection,
unit test results), resulted in not-insubstantial data payloads. Even
limited concurrent testing revealed that real-time uploading of
this data may negatively impact the performance of endpoints due
to overheads inherent in traditional AJAX calls. While alternative
approaches, such as web-sockets, are available we elected to use the
more established approach. To abate the transfer issues identified,
data was uploaded to the server asynchronously in periodic batches
using the jQuery'? library. This approach avoided hundreds of hits
to our endpoint yet, by utilising upload capacity throughout the
experiment, minimised the waiting time at the end of the coding
session that might otherwise be experienced by users with slower
internet connectivity.

A final technical consideration which affected the user experi-
ence was how tasks could be resumed. Crowdworkers may choose
to operate on many tasks at once [24], and switch between these
tasks [10]. To prevent participants loosing their work, but also from
preparing answers in advance away from the environment, the
implementation caused questions which were revisited (such as
due to a browser refresh, or picking up the question in a latter
HIT) to be skipped. This approach ensured that workers were paid,
but introduced these spurious cases with only partial worker ac-
tivity and incomplete solutions which needed removal from the
dataset. Exactly how these challenges are handled must be carefully
considered, and may, in fact, be platform dependant.

6.1 Threats to Validity

Our case study recruited 200 participants, of which 161 provided
complete data, with a broad spectrum of self-reported skill level and
whom successfully completed two software development tasks to
an objective, predetermined standard. While our case study demon-
strates that crowdsourcing can offer an interesting and efficacious
source for studying developer behaviour at a, there are a number
of notable limitations that are important to consider. Most notably,
are crowdworkers “real” programmers?

12 https://jquery.com

https://jquery.com

<Programming’21> Companion, March 22-26, 2021, Virtual, UK

As with in-lab, or in-class, studies, it is important to consider
how representative the sample of developers is before generalising
any results. Crowdsourcing platforms are no exception. While our
developers demonstrated capability to solve these relatively simple
challenges, and utilised a number of interesting techniques, they
may not represent the type or skill-level of the developer of interest—
or the population of developers as a whole. Whether or not these
respondents are suitable for a given evaluation will depend on the
technique, tool, or feature, under investigation. While the scale of
crowdsourcing offers scope for pre- and post- filtering of responses
to achieve the desired composition, it is especially important to
validate any assertions made by anonymous, remote participants.

The remote nature of these experiments presents additional chal-
lenges for the experimenter compared to in-person studies. Tech-
niques such as eye-tracking or speak-aloud approaches are much
more challenging to implement remotely and may be afflicted by
severe technical limitations. For example, as noted, the ability for
participants to switch back and forth between tasks and lack of
control over the environment external to the browser window-both
virtual and physical-may result in confounds which may not be
sufficiently ameliorated by the scale it is possible to achieve.

Where our approach offers tangible benefits, however, is in the
richness of the data that is collected. Yet, it is important that studies
of this type do not confuse random correlations in the data with
rigorous hypothesis testing. The large amounts of data that are
collected may facilitate numerous approaches to analysis that may
indicate significant effects. While this comprehensive telemetry
data may be used to identify areas of interests for future targeted
experiments, it is important that normal standards of scientific
rigour are applied to any conclusions drawn; most importantly
including avoiding over testing of the data.

The size of the tasks undertaken were design to be relatively
small. This achieved two goals: i) short experiment turn around,
and ii) minimise sunk cost for unqualified speculative participants.
As unqualified participants were able to begin the task, quickly
allowing these individuals to assess their suitability was an impor-
tant factor in our approach. The small code size of our questions
is not representative of large, real-world projects. However, it is
consistent with prior experiments in the literature (e.g. [35]). While
this may be suitable to investigate fundamental concepts, in isola-
tion, coding challenges of this size may not be suitable to consider
more complex interactions; potentially including syntax highlight-
ing investigated in our case study. For studies which require larger
programming challenges, or ones which attempt to investigate col-
laborative environments (e.g. [9]) it may be necessary to pre-qualify
programmer ability, potentially through a similar small qualifica-
tion study and later invite these participants to complete these more
complex experiments.

Whether or not our participants were objectively good, or repre-
sentative of these self assessed groups remains an open question.
Our approach, using unit tests, provided an objective benchmark for
completion, one that is used in commercial environments. However,
passing these tests does not indicate the quality of the code or skill
of the developer. For example, as seen in the accompanying data,
when looking to identify the smallest number in an array, User ID
442 chose to set the initial minimum to 999999999 (rather than,
for example, a value from the array). While all of our test cases

Jacques and Kristensson

did in fact have a minimum below this value, which allowed their
code to pass these tests, that is not true of all possible input arrays
and as such this code could not be considered objectively good.
Whether or not any given developer is “good”, or even suitable for
an individual experiment, remains an open question. However, this
concern is not a preserve of crowdsourced studies.

It may be argued that the very nature of low-paid work may
attract a lower-skilled workforce, unable to achieve improved pay
elsewhere. To avoid this, our approach ensured that work met
the aforementioned unit tests to ensure a minimal level of ability
had been demonstrated. While the positive correlations shown be-
tween objective measures of performance and user provided survey
responses suggests that self assessment was representative of ob-
jectively measured skills, our case study collected these responses
after the coding exercise. This allowed respondents to gauge their
ability against their recent work. As such, it is unknown whether
self assessment would be suitable as a pre-task filter; in fact, any
such approach may well encourage inflation to access to the task.

Finally, there may be concerns around the level of payment made
to the respondents. Anecdotally, unprompted and out-of-band mes-
saging from participants indicated that, at least some, were posi-
tively engaged, were open to further programming studies, and had
substantive commercial programming experience at the payment
level. However, while the commercial nature of crowdsourcing, and
the open-market nature of these platforms allow workers to skip
poorly paid tasks we would expect replications of this approach
to ensure that payment levels meet required ethical standards and
national minimum wages as appropriate. Further, while the on-
demand commercial basis of the relationship between the worker
and requester does not fully negate accusations of coercion, crowd-
sourcing does lack the ability to compel individual participation
from those who have not already engaged in the study, something
that might be of concern when carrying out similar experiments
with students in educational settings.

7 CONCLUSIONS

In this paper we have presented our approach to studying pro-
grammer behaviour, at scale, using web-based crowdsourcing and
specifically, Amazon Mechanical Turk. We have demonstrated that
both large scale and detailed datasets can be gathered using highly
instrumented developer environments, from across a diverse range
of developers at various skill levels. We have highlighted a number
of important design considerations, including technical limitations,
user concerns, and key features of experiment design including the
application of appropriate filters and controls. Our results validate
our approach, demonstrating predictable findings and correlation
between programmer experience and objective measures of code
quality. Finally, we highlight a number of interesting avenues for
future work as well as considerations and mitigation against some
of the challenges limitations inherent to large scale crowdsourced
studies of this type.

ACKNOWLEDGMENTS

This work was funded by an EPSRC studentship and EPSRC grant
EP/R004471/1. Data available at https://doi.org/10.17863/CAM.66593.

https://doi.org/10.17863/CAM.66593

Studying Programmer Behaviour at Scale: A Case Study Using MTurk

REFERENCES

(1]

[2

—

S
s

=

[13

[14]

[15]

[16]

=
=

(18]

[19]

[20]

[21]

[22]

[23]

Amazon. 2014. Amazon Mechanical Turk API Reference.
amazonaws.com/MechTurk/latest/amt- APLpdf

Vamshi Ambati, Stephan Vogel, and Jaime G. Carbonell. 2010. Active Learning
and Crowd-Sourcing for Machine Translation. In Proceedings of the Seventh
International Conference on Language Resources and Evaluation (LREC 2010). ELRA,
2169-2174. https://works.bepress.com/jaime_carbonell/169/

Tanya R. Beelders and Jean-Pierre L. du Plessis. 2016. Syntax Highlighting as an
Influencing Factor When Reading and Comprehending Source Code. Journal of
Eye Movement Research 9, 1 (2016). https://doi.org/10.16910/jemr.9.1.1

Tara S. Behrend, David J. Sharek, Adam W. Meade, and Eric N. Wiebe. 2011. The
Viability of Crowdsourcing for Survey Research. Behavior Research Methods 43,
3 (March 2011), 800. https://doi.org/10.3758/s13428-011-0081-0

Djellel Eddine Difallah, Michele Catasta, Gianluca Demartini, Panagiotis G.
Ipeirotis, and Philippe Cudré-Mauroux. 2015. The Dynamics of Micro-Task
Crowdsourcing: The Case of Amazon MTurk. In Proceedings of the 24th Inter-
national Conference on World Wide Web (WWW 2015). ACM, 238-247. https:
//doi.org/10.1145/2736277.2741685

Giovanna Maria Dimitri. 2015. The Impact of Syntax Highlighting in Sonic Pi. In
PPIG 2015 - 26th Annual Workshop. 12.

Michael Droettboom. 2019. Pyodide: Bringing the Scientific Python Stack to the
Browser - Mozilla Hacks - the Web Developer Blog. https://hacks.mozilla.org/
2019/04/pyodide-bringing-the-scientific- python-stack-to-the-browser/

Yotam Gingold, Ariel Shamir, and Daniel Cohen-Or. 2012. Micro Perceptual
Human Computation for Visual Tasks. ACM Transactions on Graphics 31, 5 (Sept.
2012), 119:1-12. https://doi.org/10.1145/2231816.2231817

Max Goldman, Greg Little, and Robert C. Miller. 2011. Real-Time Collaborative
Coding in a Web IDE. In Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology (UIST ’'11). ACM, 155-164. https://doi.org/10.
1145/2047196.2047215

Sandy J. J. Gould, Anna L. Cox, and Duncan P. Brumby. 2016. Diminished Control
in Crowdsourcing: An Investigation of Crowdworker Multitasking Behavior.
ACM Transactions on Computer-Human Interaction 23, 3 (June 2016), 19:1-29.
https://doi.org/10.1145/2928269

David Alan Grier. 2013. Crowdsourcing For Dummies. John Wiley & Sons.
Shuchi Grover, Marie Bienkowski, Amir Tamrakar, Behjat Siddiquie, David Salter,
and Ajay Divakaran. 2016. Multimodal Analytics to Study Collaborative Problem
Solving in Pair Programming. In Proceedings of the Sixth International Conference
on Learning Analytics & Knowledge - LAK ’16. ACM Press, Edinburgh, United
Kingdom, 516-517. https://doi.org/10.1145/2883851.2883877

Christoph Hannebauer, Marc Hesenius, and Volker Gruhn. 2018. Does Syntax
Highlighting Help Programming Novices? Empirical Software Engineering 23, 5
(Oct. 2018), 2795-2828. https://doi.org/10.1007/s10664-017-9579-0

Jeffrey Heer and Michael Bostock. 2010. Crowdsourcing Graphical Perception:
Using Mechanical Turk to Assess Visualization Design. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI 2010). ACM,
203-212. https://doi.org/10.1145/1753326.1753357

James D. Herbsleb and Audris Mockus. 2003. Formulation and Preliminary Test
of an Empirical Theory of Coordination in Software Engineering. In Proceed-
ings of the 9th European Software Engineering Conference Held Jointly with 11th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(ESEC/FSE °03). ACM, 138-137. https://doi.org/10.1145/940071.940091

Paul Hitlin. 2016. Research in the Crowdsourcing Age, a Case Study. Pew
Research Center. http://www.pewinternet.org/2016/07/11/research-in-the-
crowdsourcing-age-a-case-study/

Panagiotis G. Ipeirotis. 2010. Demographics of Mechanical Turk. (April 2010).
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1585030

Jason T. Jacques and Per Ola Kristensson. 2015. Understanding the Effects
of Code Presentation. In Proceedings of the 6th Workshop on Evaluation and
Usability of Programming Languages and Tools (PLATEAU 2015). ACM, 27-30.
https://doi.org/10.1145/2846680.2846685

Phillip Johnston and Rozi Harris. 2019. The Boeing 737 MAX Saga: Lessons for
Software Organizations. Software Quality Professional 21, 3 (2019), 9.

Evan Jones, Adam Marcus, and Eugene Wu. 2010. 6.092 Introduc-
tion to Programming in Java, January IAP 2010. MIT OpenCourse-
Ware. http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-092-introduction-to- programming-in-java-january-iap- 2010/

Aniket Kittur, Ed H. Chi, and Bongwon Suh. 2008. Crowdsourcing User Studies
with Mechanical Turk. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI 2008). ACM, 453-456. https://doi.org/10.1145/1357054.
1357127

Frank Kleemann, G. Giinter Vo83, and Kerstin Rieder. 2008. Un(Der)Paid Inno-
vators: The Commercial Utilization of Consumer Work Through Crowdsourc-
ing. Science, Technology & Innovation Studies 4, 1 (2008), 5-26. http://www.sti-
studies.de/ojs/index.php/sti/article/view/81

A. J. Ko, Thomas D. LaToza, and Margaret M. Burnett. 2015. A Practical Guide to
Controlled Experiments of Software Engineering Tools with Human Participants.

http://awsdocs.s3.

[24]

[25

[27

[28

[29

@
=

[31

[32

[33

&
=

[35

[36

[37

[38

[39

[40

[41

[42]

[43

<Programming’21> Companion, March 22-26, 2021, Virtual, UK

Empirical Software Engineering 20, 1 (Feb. 2015), 110-141.
1007/s10664-013-9279-3

Laura Lascau, Sandy J. J. Gould, Anna L. Cox, Elizaveta Karmannaya, and Dun-
can P. Brumby. 2019. Monotasking or Multitasking: Designing for Crowdwork-
ers’ Preferences. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (CHI ’19). Association for Computing Machinery, Glasgow,
Scotland Uk, 1-14. https://doi.org/10.1145/3290605.3300649

Thomas D. LaToza, W. Ben Towne, Christian M. Adriano, and André van der Hoek.
2014. Microtask Programming: Building Software with a Crowd. In Proceedings
of the 27th Annual ACM Symposium on User Interface Software and Technology
(UIST ’14). ACM, 43-54. https://doi.org/10.1145/2642918.2647349

N.G. Leveson and C.S. Turner. 1993. An Investigation of the Therac-25 Accidents.
Computer 26, 7 (July 1993), 18-41. https://doi.org/10.1109/MC.1993.274940
Yuwei Lin. 2005. Gender Dimensions of FLOSS Development. Mute Magazine 2, 1
(2005), 38-42. https://www.metamute.org/editorial/articles/gender-dimensions-
floss-development

Samiha Marwan, Joseph Jay Williams, and Thomas Price. 2019. An Evaluation of
the Impact of Automated Programming Hints on Performance and Learning. In
Proceedings of the 2019 ACM Conference on International Computing Education
Research (ICER ’19). Association for Computing Machinery, Toronto ON, Canada,
61-70. https://doi.org/10.1145/3291279.3339420

Scott Novotney and Chris Callison-Burch. 2010. Cheap, Fast and Good Enough:
Automatic Speech Recognition with Non-Expert Transcription. In Human Lan-
guage Technologies: The 2010 Annual Conference of the North American Chapter of
the Association for Computational Linguistics (HLT ’10). Association for Computa-
tional Linguistics, 207-215. http://dl.acm.org/citation.cfm?id=1857999.1858023
Stephen O’Grady. 2020. The RedMonk Programming Language Rankings: June
2020. https://redmonk.com/sogrady/2020/07/27/language-rankings-6-20/
David B. Palumbo. 1990. Programming Language/Problem-Solving Research: A
Review of Relevant Issues. Review of Educational Research 60, 1 (1990), 65-89.
http://rer.sagepub.com/content/60/1/65.short

Dewayne E. Perry, Adam A. Porter, and Lawrence G. Votta. 2000. Empirical
Studies of Software Engineering: A Roadmap. In Proceedings of the Conference on
The Future of Software Engineering (ICSE °00). ACM, 345-355. https://doi.org/10.
1145/336512.336586

Gaston Pugliese, Christian Riess, Freya Gassmann, and Zinaida Benenson. 2020.
Long-Term Observation on Browser Fingerprinting: Users’ Trackability and
Perspective. Proceedings on Privacy Enhancing Technologies 2020, 2 (April 2020),
558-577. https://doi.org/10.2478/popets-2020-0041

Patrick Rein, Marcel Taeumel, and Robert Hirschfeld. 2020. Towards Empirical
Evidence on the Comprehensibility of Natural Language Versus Programming
Language. In Design Thinking Research : Investigating Design Team Performance,
Christoph Meinel and Larry Leifer (Eds.). Springer International Publishing,
Cham, 111-131. https://doi.org/10.1007/978-3-030-28960-7_7

Advait Sarkar. 2015. The Impact of Syntax Colouring on Program Comprehension.
In PPIG 2015 - 26th Annual Workshop. 10. http://www.ppig.org/library/paper/
impact-syntax-colouring-program-comprehension

Zohreh Sharafi, Zéphyrin Soh, Yann-Gaél Guéhéneuc, and Giuliano Antoniol.
2012. Women and Men—Different but Equal: On the Impact of Identifier Style on
Source Code Reading. In 20th International Conference on Program Comprehension
(ICPC 2012). IEEE, 27-36. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
6240505

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y. Ng. 2008. Cheap
and Fast—But Is It Good?: Evaluating Non-Expert Annotations for Natural Lan-
guage Tasks. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP "08). Association for Computational Linguistics,
254-263. http://dl.acm.org/citation.cfm?id=1613715.1613751

Kathryn T. Stolee and Sebastian Elbaum. 2010. Exploring the Use of Crowdsourc-
ing to Support Empirical Studies in Software Engineering. In Proceedings of the
2010 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM '10). ACM, 35:1-4. https://doi.org/10.1145/1852786.1852832
TIOBE. 2021. February 2021 Index | TIOBE - The Software Quality Company.
https://www.tiobe.com/tiobe-index/

Preston Tunnell Wilson, Justin Pombrio, and Shriram Krishnamurthi. 2017. Can
We Crowdsource Language Design?. In Proceedings of the 2017 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward! 2017). Association for Computing Machinery,
Vancouver, BC, Canada, 1-17. https://doi.org/10.1145/3133850.3133863

W3C. 2018. Web Content Accessibility Guidelines (WCAG) 2.1. https://www.
w3.0rg/TR/IWCAG21/#reflow

John Walkenbach. 2011. Basic Facts about Formulas. In Excel® 2010 Formulas.
John Wiley & Sons, Ltd, 39-63. https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781118257630.ch2

Paul Whitla. 2009. Crowdsourcing and Its Application in Marketing Activities.
Contemporary Management Research 5, 1 (Feb. 2009), 15-28. https://doi.org/10.
7903/cmr.1145

https://doi.org/10.

http://awsdocs.s3.amazonaws.com/MechTurk/latest/amt-API.pdf
http://awsdocs.s3.amazonaws.com/MechTurk/latest/amt-API.pdf
https://works.bepress.com/jaime_carbonell/169/
https://doi.org/10.16910/jemr.9.1.1
https://doi.org/10.3758/s13428-011-0081-0
https://doi.org/10.1145/2736277.2741685
https://doi.org/10.1145/2736277.2741685
https://hacks.mozilla.org/2019/04/pyodide-bringing-the-scientific-python-stack-to-the-browser/
https://hacks.mozilla.org/2019/04/pyodide-bringing-the-scientific-python-stack-to-the-browser/
https://doi.org/10.1145/2231816.2231817
https://doi.org/10.1145/2047196.2047215
https://doi.org/10.1145/2047196.2047215
https://doi.org/10.1145/2928269
https://doi.org/10.1145/2883851.2883877
https://doi.org/10.1007/s10664-017-9579-0
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/940071.940091
http://www.pewinternet.org/2016/07/11/research-in-the-crowdsourcing-age-a-case-study/
http://www.pewinternet.org/2016/07/11/research-in-the-crowdsourcing-age-a-case-study/
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1585030
https://doi.org/10.1145/2846680.2846685
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-092-introduction-to-programming-in-java-january-iap-2010/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-092-introduction-to-programming-in-java-january-iap-2010/
https://doi.org/10.1145/1357054.1357127
https://doi.org/10.1145/1357054.1357127
http://www.sti-studies.de/ojs/index.php/sti/article/view/81
http://www.sti-studies.de/ojs/index.php/sti/article/view/81
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1145/3290605.3300649
https://doi.org/10.1145/2642918.2647349
https://doi.org/10.1109/MC.1993.274940
https://www.metamute.org/editorial/articles/gender-dimensions-floss-development
https://www.metamute.org/editorial/articles/gender-dimensions-floss-development
https://doi.org/10.1145/3291279.3339420
http://dl.acm.org/citation.cfm?id=1857999.1858023
https://redmonk.com/sogrady/2020/07/27/language-rankings-6-20/
http://rer.sagepub.com/content/60/1/65.short
https://doi.org/10.1145/336512.336586
https://doi.org/10.1145/336512.336586
https://doi.org/10.2478/popets-2020-0041
https://doi.org/10.1007/978-3-030-28960-7_7
http://www.ppig.org/library/paper/impact-syntax-colouring-program-comprehension
http://www.ppig.org/library/paper/impact-syntax-colouring-program-comprehension
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6240505
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6240505
http://dl.acm.org/citation.cfm?id=1613715.1613751
https://doi.org/10.1145/1852786.1852832
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/3133850.3133863
https://www.w3.org/TR/WCAG21/#reflow
https://www.w3.org/TR/WCAG21/#reflow
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118257630.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118257630.ch2
https://doi.org/10.7903/cmr.1145
https://doi.org/10.7903/cmr.1145

	Abstract
	1 Introduction
	2 Alternative Approaches
	3 Crowdsourcing Coder Behaviour
	3.1 Programming Languages
	3.2 Web-based Editor
	3.3 Validation

	4 Case Study
	4.1 Syntax Highlighting
	4.2 Task Choice and Design
	4.3 Procedure

	5 Results
	5.1 Task Completion Time
	5.2 Programmer Interactions
	5.3 Code Efficiency and Errors
	5.4 Syntax Highlighting
	5.5 Questions and Sequencing Effects
	5.6 Survey Data

	6 Discussion
	6.1 Threats to Validity

	7 Conclusions
	Acknowledgments
	References

