
Understanding the Effects of Code Presentation

Jason T. Jacques Per Ola Kristensson
Department of Engineering

University of Cambridge, UK
{jtj21,pok21}@cam.ac.uk

Abstract
The majority of software is still written using text-based
programming languages. With today’s large, high-resolution
color displays, developers have devised their own “folk de-
sign” methodologies to exploit these advances. As software
becomes more and more critical to everyday life, support-
ing developers in rapidly producing and revising code accu-
rately should be a priority. We consider how layout, type-
faces, anti-aliasing, syntax highlighting, and semantic high-
lighting might impact developer efficiency and accuracy.

Keywords software visualization, syntax highlighting, pro-
gramming

1. Introduction
Modern display technology offers practically unlimited pre-
sentation opportunities. Developers may have access to mul-
tiple large, bright displays with resolutions that may exceed
human visual acuity [1]. Despite this flexibility, software de-
velopers, and some academics [3], have been resistant to
significant change in programming environments. Program-
ming is still largely a text-based activity.

Within this text-based environment, one way to provide
additional support to programmers is to use secondary nota-
tion. Secondary notation does not change the formal mean-
ing of the code but allows additional context to be layered
into the code [5]. Examples of secondary notation in source
code editors include syntax highlighting, and indentation.
Developers can benefit from decreased cognitive load while
reading, writing, and rewriting code [14]. Programmers have
embraced this facility to add additional meaning to their
work [2] by including comments, using indentation styles,
and applying syntax highlighting.

Copyright is held by the author/owner(s). This paper was published in the proceedings
of the Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU) at the ACM SPLASH Conference. October, 2015. Pittsburgh, Pennsylva-
nia, USA.

2. Background
Understanding and improving the process of reading text on
a display is not a problem unique to software developers. Op-
timizing the presentation of symbols on displays is essential
to maximize accuracy and minimize discomfort. Early work
by Radl [10] investigated how green, white and yellow phos-
phors used in contemporary VDUs (visual display units) af-
fected transcription error rates. The author concludes that
around the optimal wavelength of 555 nm, brightness and
contrast take over as the significant determinant of accuracy.
Radl also notes that color preference “seems to be caused
mainly by psychological factors rather than by physiologi-
cal mechanisms” [10].

The limitations of early display technologies lead to in-
terest in typesetting computer code to improve readability.
Baecker and Marcus [2] demonstrated their visual C com-
piler, leveraging the higher resolutions offered by laser print-
ing. Their tool systematically applies typographic styles and
annotations to source code to improve both the aesthetics
and usefulness of the source code. Expecting the output to
be duplicated, the authors ensured that gray values used for
highlighting would maintain the integrity of the text after
multiple generations of photocopying.

Shneiderman [13] describes his vision for a model pro-
gramming environment, which includes much of the func-
tionality depended on by developers today, such as syn-
tax highlighting, code folding, macros, and version control.
Shneiderman [13] presents his model environment without
formal validation as a foundation to stimulate future work
and discussion of human factors in software development.

With the increased flexibility of modern computing, aug-
menting and enhancing the systematic presentation of text
in the editor offers further opportunities to improve develop-
ers’ reading and comprehension of code [13]. By using both
controlled studies and non-invasive capture of real-world de-
veloper practice [15], usage patterns can be discerned to dis-
cover and develop targeted enhancements. We believe such
improvements have the potential to increase development
speed and reduce errors in the resulting software.

3. Hypotheses
A variety of advances have been made in the presentation of
onscreen code. However, much current practices lacks val-
idation. This is highlighted by the numerous opinions and
anecdotes we describe in this section. Websites and blogs,
and the editors themselves, are a modern “folk design” re-
source. What is now needed is verification and formaliza-
tion of this untested corpus of potential improvements. The
following considers the impact of a variety of these non-
invasive changes to the editor environment on the developer.

3.1 Layout and Indentation
The use of indentation (tabs or spaces to visualize scope)
and layout (other intentional positioning, such as grouping of
statements to infer related meaning) to enhance or add addi-
tional meaning to code is common among developers. Lein-
baugh [6] points out the duplicate effort by programmers to
maintain appropriate visual style with indentation and accu-
rately represent the actual or preferred scope of code. De-
spite this maintenance effort, Miara et al. [7] demonstrate
support for using limited indentation to aid comprehension,
with larger indentation reducing or eliminating the benefit.

Layout can also be used to suggest association or dis-
association between groups of program statements. Green
and Petre [5] suggest these “paragraphs” (visual grouping
of code to inply an association) and the use of “rhyme”
(repetitive code structures to highlight intentional or unin-
tentional differences) aid in understanding code. For devel-
opers, however, the final layout and indentation are part of
the creation process, and can be a very personal matter, en-
gendering strong feelings1,2.

Others have taken these informal practices and attempted
to improve upon and automate them. The investigation of
“folk design” by Baecker and Marcus provided a starting
point for their own work on their visual C compiler [2]. Sim-
ilarly, the book format paradigm by Oman and Cook [9] uses
tools to automatically apply indentation and layout changes
to the source code. Focusing on practical access to the code,
their work extends the layout by adding a preface, table of
contents, and other typographic features. These changes aim
to provide identifying and organizational cues to the pro-
grammer.

H1 Limited, consistent indentation assists developer
comprehension.

H2 Grouping and ordering of program statements can
assist developers in identifying patterns and errors.

3.2 Typefaces and Fonts
To read code, the typeface used to render it must be legi-
ble. Even basic editors, such as Windows Notepad, offer the

1 J. Zawinski, Tabs versus Spaces, 2000, http://www.jwz.org/doc/tabs-vs-
spaces.html
2 J. Atwood, Death to the Space Infidels!, 2009, http://blog.codinghorror.
com/death-to-the-space-infidels/

ability to change the typeface. The selection of appropriate
typefaces is much discussed in the online developer commu-
nity3,4,5. Among developers monospace seems to be a fore-
gone conclusion, with idealized requirements often omitting
to specify this explicitly3,4. Even when developers consider
proportional fonts, this is often quickly dismissed as a non
standard presentation6.

Microsoft Small Basic, a programming environment
aimed at beginners [11], elects to use both monospace text
for executable code and a proportional italicized font for
comments. This alternative presentation of the documentary
parts of the code aids in the visual segmentation and offers
an interesting alternative to the monospace monoculture.

While many editors limit the editor window to just one
typeface, most offer additional differentiation options us-
ing bold, italicized, and underlined variants. The use of al-
ternative fonts for certain syntax suggest the increased sig-
nificance of these elements [13] and can impart additional
meaning to the following code.

H3 Different typefaces aid developers in segmenting code
into component parts, such as program instructions and
comments.

H4 Varying the font, such as using boldface or italic,
assists developers in tokenization of the syntax.

3.3 Anti-aliasing
Reading on a display is a different experience than reading
on paper. While computers display a rigid grid of pixels at a
fixed resolution, the printed word is smooth, and sharply ren-
dered. This differing presentation can affect reading speed.
Experiments by Gould [4] show that much of the perfor-
mance loss caused by reading from a screen, can be negated
by having it more closely resemble paper-based renderings,
including the use of anti-aliasing. Anti-aliasing allows the
jagged, stair-stepping seen in computer graphics and text to
be smoothed out using intermediate coloration in some ad-
jacent pixels.

The use of anti-aliasing of text has been controver-
sial among developers with some describing the effect as
“muddy”6 and “extremely fatiguing”7, even for typefaces
specifically designed for use with anti-aliasing. This may be
impacted by developer inclinations to use small point sizes
to maximize the amount of text shown. As text becomes
smaller a larger proportion of the rendered character is com-

3 T. Lowing, Monospace/Fixed Width Programmer’s Fonts http://www.
lowing.org/fonts/
4 J. Atwood, Programming Fonts, 2004, http://blog.codinghorror.com/
progamming-fonts/
5 D. Benjamin, Top 10 Programming Fonts, 2009, http://hivelogic.com/
articles/top-10-programming-fonts
6 R. Strahl, Clear Type this is supposed to be better?, 2005,
http://weblog.west-wind.com/posts/2005/Jul/25/Clear-Type-this-is-
supposed-to-be-better
7 J. Atwood, Consolas and ClearType, 2005, http://blog.codinghorror.com/
consolas-and-cleartype/

prised of smoothing shaded pixels, giving the character a
more blurry overall appearance.

As screen resolutions have improved and display sizes
increased anti-aliased fonts have become more acceptable5.
Higher resolutions have allowed for smaller, less perceptible
pixels, minimizing the ability to discern individual modifi-
cations to the letter outlines. Similarly, larger display sizes
allow more computer code to be displayed simultaneously
and lessen the need to maintain small point sizes to show
large amounts of text.

H5 Anti-aliasing improves onscreen code readability at
larger point sizes.

3.4 Syntax Highlighting
Most professional code editors support some form of syntax
highlighting. By differentiating certain features of the syn-
tax, code editors assist in the tokenization of the code for
easier parsing by the human reader [13].

At the time of writing, Studio Styles, a popular color
scheme repository for Visual Studio, has over 3,000 syn-
tax highlighting schemes available for download and use 8.
The most popular scheme, Son of Obsidian, combines a dark
background for high-contrast with many of the same col-
ors that Radl [10] found most beneficial for symbol recogni-
tion on dark screens. The Son of Obsidian scheme has over
500,000 downloads; twice as many as the next most popular.

Developers have attempted to formalize the color schemes
they use. The Solarized project by Ethan Schoonover [12]
is one such example. Solarized uses a lower contrast color
palette to reduce fatigue, while maximizing differentiation
between syntactic elements using complimentary colors
(e.g, red-green, yellow-purple, etc.). Solarized also allows
the background color of the editor to be switched from light
to dark while preserving the contrast relationships with min-
imal color changes between modes. This allows the most ap-
propriate background to be used for the ambient light level.

There has also been interest in scientific testing of color
schemes and disappointment among developers9,10 by the
dearth of available publications. While some developers
seem skeptical of an objectively “better” color scheme9,
Radl [10] presents an example of a physiological phe-
nomenon that might be exploited to this end (namely, vary-
ing color sensitivities of the eye).

H6 Color schemes which tokenization syntax by exploit-
ing physiological properties aid readability of code.

H7 Very high contrast color schemes can induce eye
fatigue over long periods of use.

8 Studio Styles, Visual Studio Color Schemes, https://studiostyl.es/
9 Programmers StackExchange, Syntax-highlighting color scheme studies,
2011, http://programmers.stackexchange.com/questions/89936/syntax-
highlighting-color-scheme-studies
10 Skeptics StackExchange, Are light-on-dark colour schemes for computer
screens better for programmers?, 2011, http://skeptics.stackexchange.com/
questions/6925/are-light-on-dark-colour-schemes-for-computer-screens-
better-for-programmers

02/10/2015 main.c 1

/home/jason/projects/Circle/main.c

int printf(const char * format, ...);

 #include<stdio.h>

 #include<stdlib.h>

 const double pi = 3.14159265;

 int main(int argc, char *argv[]) {
double radius, diameter, circumference, area;

if (argc < 2) return -1;
radius = atof(argv[1]);

diameter = 2 * radius;

circumference = pi * diameter;

area = pi * (radius * radius);

printf("Diameter : %f\n", diameter);

printf("Circumference: %f\n", circumference);

printf("Area : %f\n", area);

return 0;
 }

Figure 1. Example of Semantic Highlighting in KDevelop.
Note that variables names each have their own color and
retain this throughout their scope to aid identification.

3.5 Semantic Highlighting
With the perceived benefits of syntax highlighting, there has
been interest in expanding the scope from syntactic elements
to semantic meaning of code. Eclipse 3.0, a popular Java-
based editor and IDE, introduced advanced highlighting11,
styling local variables, an objects fields, and static fields sep-
arately. This separation of constants from variables reduces
developer dependency on more manual stylistic techniques,
such as using uppercase names, to indicate immutability.

In 2009, Nolden [8] coined the term “semantic highlight-
ing” for his work on KDevelop. While syntax highlighting
uses a deterministic parser to aid in tokenizing syntactic ele-
ments, semantic highlighting attempts to reveal the meaning
of the code. One of the earliest implementations of semantic
highlighting first appeared in KDevelop [8]. Like Eclipse,
KDevelop highlights items based on scope, however it ad-
ditionally applies local variable colorization. By assigning
individual variables their own color the developer can trace
how data flows and is manipulated without actually reading
the text names given to each variable. See Figure 1.

Recently, renewed interest was given to semantic high-
lighting by its rediscovery by Evan Brooks12. Brooks’ re-
discovery encouraged discussion on the concept and with
some developers producing plugins for popular languages
and IDEs to support the semantic highlighting13. Dynamic
coloration requires much more flexible color schemes and
can reduce the uniqueness of hues applied to traditionally
highlighted syntax [13]. Brooks initial implementation at-
tempted to evenly distribute variables over the spectrum12,

11 IBM, Eclipse 3.0 News - Part 4, 2004, http://archive.eclipse.org/eclipse/
downloads/drops/R-3.0-200406251208/eclipse-news-part4-R3.html
12 E. Brooks, Coding in Color, 2014, https://medium.com/@evnbr/coding-
in-color-3a6db2743a1e
13 Reddit, Coding in color : programming, 2014, https://www.reddit.com/r/
programming/comments/1w76um/coding in color/

however exploiting physiological properties of human vision
to better differentiate tokens might offer improvements.

Some developers voiced concern that semantic highlight-
ing might overload the presentation and further obscure the
meaning of the code. One observer commented that semantic
highlighting might “turn your code into a confusing christ-
mas tree.”13 Nolden anticipated initial developer reluctance
to use semantic highlighting, and included an option to dis-
able the feature, commenting that “the best thing about it:
You dont have to use it at all.” [8]

H8 Highlighting differing scope aids developer identifi-
cation of the impacts of changes to variables.

H9 Semantic highlighting improves developer under-
standing of data flow through code.

4. Discussion and Conclusion
While the presentation of code has undergone a number
of changes over the last three or four decades, progress
has been slow. Both developers and academics have at-
tempted to improve the editing experience through a variety
of techniques. However, without specific design insights it
can be difficult to transform amateur practice into profes-
sional formalism [5]. Differing opinions1,2 and resistance to
change6,7,12,13 has hampered progress. However, some en-
hancements such as syntax highlighting have, at least con-
ceptually, been almost universally embraced8,12,13 .

Despite promising early work [4, 10] pointing to physio-
logical mechanisms that could be exploited to enhance on-
screen reading, the slow adoption of technologies such as
anti-aliasing6,7 by developers has hampered their application
in code editors. With the widespread availability of large,
high-resolution, color displays the dearth of research inves-
tigating the presentation of code is disappointing9,10.

Developers have instead independently pursued formal-
ization [12] and improvement [8] of their editing environ-
ments. It is clear that untested theories and the personal pref-
erences of those creating editors have become the state of
the art. Now, it is essential that rigorous study of these be-
haviors is brought up-to-date with the changes in technology
that have been seen in the intervening decades since human
factors in programming was under serious study.

This paper has revisited some early work to improve the
developer experience of editing code. We have considered
how changes to the editor have been rejected, adopted, and
embraced by developers. We suggest changes that might
be tested and refined to improve readability of code. By
focusing only on the text itself we ignore the impact that
other innovations, such as integration and automation of the
build process or live-state inspection and steppable debug-
gers might have had on developers.

However, with software so critical to everyday life, a sin-
gle error can impact millions of direct and indirect users. As
writing code with text-based languages remains the predom-
inant method used to develop software, focusing on this key

interaction space is critical to aiding developers in their un-
derstanding of code and minimizing errors in the software
we use everyday and that affects us all.

References
[1] H. P. Apple, T. K. Leonard-Green, E. M. Harvey, J. M. Miller,

and D. Apple. Suitability of computer generated grating
acuity stimuli for assessment of grating acuity in children.
Investigative Ophthalmology & Visual Science, 55(13):2738–
2738, Apr. 2014. ISSN 1552-5783.

[2] R. Baecker and A. Marcus. On Enhancing the Interface to the
Source Code of Computer Programs. In Proc. CHI ’83, pages
251–255, New York, NY, USA, 1983. ACM. ISBN 0-89791-
121-0.

[3] E. W. Dijkstra. On the cruelty of really teaching computing
science. Communications of the ACM, 32:1398–1404, 1989.

[4] J. D. Gould, L. Alfaro, R. Finn, B. Haupt, and A. Minuto.
Reading from CRT Displays Can Be as Fast as Reading from
Paper. Human Factors: The Journal of the Human Factors
and Ergonomics Society, 29(5):497–517, Oct. 1987. ISSN
0018-7208, 1547-8181.

[5] T. R. G. Green and M. Petre. Usability Analysis of Visual
Programming Environments: A Cognitive Dimensions Frame-
work. Journal of Visual Languages & Computing, 7(2):131–
174, June 1996. ISSN 1045-926X.

[6] D. W. Leinbaugh. Indenting for the compiler. ACM SIGPLAN
Notices, 15(5):41–48, 1980.

[7] R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shneider-
man. Program Indentation and Comprehensibility. Commun.
ACM, 26(11):861–867, Nov. 1983. ISSN 0001-0782.

[8] D. Nolden. C++ IDE Evolution: From Syntax High-
lighting to Semantic Highlighting, Jan. 2009. URL
https://zwabel.wordpress.com/2009/01/08/c-ide-evolution-
from-syntax-highlighting-to-semantic-highlighting/.

[9] P. W. Oman and C. R. Cook. Typographic style is more than
cosmetic. Communications of the ACM, 33(5):506–520, 1990.

[10] G. W. Radl. Experimental investigations for optimal
presentation-mode and colours ofsymbols on the CRT-screen.
In Ergonomic aspects of visual display terminals, pages 127–
135. Taylor & Francis, 1980.

[11] V. Raji. Microsoft Small Basic: An introduction to Program-
ming. Microsoft, Jan. 2013.

[12] E. Schoonover. Solarized, 2011. URL http://ethanschoonover.
com/solarized.

[13] B. Shneiderman. A Model Programming Environment. In
H. R. Hartson, editor, Advances in human-computer interac-
tion., volume 1, pages 105–131. Ablex, Norwood, N.J., 1985.
ISBN 0-89391-244-1.

[14] J. Sweller. Cognitive load theory, learning difficulty, and
instructional design. Learning and Instruction, 4(4):295–312,
1994. ISSN 0959-4752.

[15] Y. Yoon and B. A. Myers. Capturing and Analyzing Low-level
Events from the Code Editor. In Proc. PLATEAU ’11, pages
25–30, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
1024-6.

